Number of Eigenvalues of Non-Self-Adjoint Schrödinger Operators with Dilation Analytic Complex Potentials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of eigenvalues of Schrödinger operators with complex potentials

We study the eigenvalues of Schrödinger operators with complex potentials in odd space dimensions. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

Non-variational Approximation of Discrete Eigenvalues of Self-adjoint Operators

We establish sufficiency conditions in order to achieve approximation to discrete eigenvalues of self-adjoint operators in the second-order projection method suggested recently by Levitin and Shargorodsky, [15]. We find explicit estimates for the eigenvalue error and study in detail two concrete model examples. Our results show that, unlike the majority of the standard methods, second-order pro...

متن کامل

An analytic characterization of the eigenvalues of self-adjoint extensions

Let à be a self-adjoint extension in K̃ of a fixed symmetric operator A in K ⊆ K̃. An analytic characterization of the eigenvalues of à is given in terms of the Q-function and the parameter function in the Krein–Naimark formula. Here K and K̃ are Krein spaces and it is assumed that à locally has the same spectral properties as a self-adjoint operator in a Pontryagin space. The general results are ...

متن کامل

On Eigenvalues Problem for Self-adjoint Operators with Singular Perturbations

We investigate the eigengenvalues problem for self-adjoint operators with the singular perturbations. The general results presented here include weakly as well as strongly singular cases. We illustrate these results on two models which correspond to so-called additive strongly singular perturbations.

متن کامل

Eigenvalues of Schrödinger Operators with Complex Surface Potentials

We consider Schrödinger operators in R with complex potentials supported on a hyperplane and show that all eigenvalues lie in a disk in the complex plane with radius bounded in terms of the L norm of the potential with d − 1 < p ≤ d. We also prove bounds on sums of powers of eigenvalues. Introduction and main results. Recently there has been great interest in bounds on eigenvalues of Schrödinge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Reports on Mathematical Physics

سال: 2019

ISSN: 0034-4877

DOI: 10.1016/s0034-4877(19)30037-0